VP10 LCD Controller

Automatic analog and digital input mode detection with mode-independent or mode-specific area-of-interest control, unlimited re-sizing, and frame rate conversion for resolutions up to WUXGA.

VP10 LCD Controller
The VP10 LCD Controller provides a direct connection between analog and digital DVI video sources and a wide range of AMLCD display modules.

Enhancements
The VP10 includes several enhancements over our flagship VP7 series. In particular, the VP10 offers:
- Resolutions up to WUXGA,
- RoHS compliance, and
- Improved re-sizing
- Dual TMDS inputs
- NTSC and PAL inputs are standard

User Programmable Modes
Modes define both the electrical form (RGB, DVI, etc) and the timing of a video input. With fully customizable input mode definitions, panel power sequences, and output timing parameters, you can configure the VP10 for your unique application.

Supports Standard and Custom Video
In addition to converting analog RGB and DVI for TFT panels, the VP10 supports interlaced video formats such as RS-343, RS-170, and STANAG. The VP10 can also be programmed to support custom or non-standard video formats.

Powerful Configuration Utility
The VP10 configuration utility allows you to define:
- A prioritized list of all applicable video input modes that will be automatically detected,
- mode-independent parameters, such as scaled (output) area-of-interest and output synchronization method
- Sequences for power up, loss of video and video detection.

Features
Based on state-of-the-art processing technology, the VP10 LCD Controller capabilities include:

Automatic video input mode detection
- Detects internally programmed, prioritized input modes and automatically converts and scales the video in 1-2 seconds.
- “Mode dependent” and “Mode independent” conversion parameters are supported.
- User-selectable “electrical form break” allows a mode switch when a higher priority input mode is detected on a different electrical input. For example, assume that a DVI input mode is higher priority than the currently active RGB input mode. If the DVI interface becomes active with a valid mode, the VP10 will switch to the higher priority DVI input mode.

Video Conversion and Synchronization
- Digitization of computer-generated video sources with separate syncs or sync-on-green
- Drives commercial AMLCDs (up to WUXGA) and inverters
- Non-interlaced and interlaced RGB inputs and outputs
- Dual DVI (TMDS) inputs
- Digitization and de-interlacing of consumer video formats, including NTSC and PAL
- Frame rate conversion; free running or frame synced outputs

Scaling, Windowing, and Area-of-Interest Control
- Unlimited, independent horizontal and vertical scaling
- Programmable image position within larger background area for both input and output
- Incoming video gain and offset adjustments
- Image can be reversed left to right and flipped top to bottom

Programmable
- Remote interface for both initial configuration and, if required, operational control
- Programmable power and “loss of video” sequences with user-defined “On Screen Display” Messages
- Fine phase clock adjustment for pixel sampling
- Interfaces to most common inverters
VP10 Configuration
The VP10 Configuration utility is supplied to customers and installs on Windows platforms. The utility connects to the VP10 via an available RS-232 serial cable.

<table>
<thead>
<tr>
<th>Section</th>
<th>VP10 Configuration Utility Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Display Properties</td>
<td>Defines electrical format and timing to the attached AMLCD panel. Includes definition of backlight control and power up, power down, and loss of video sequences. Also allows user to set up appropriate On Screen Display messages during various sequences.</td>
</tr>
<tr>
<td>B Global Properties</td>
<td>Definition of mode independent global properties which are applied independently of the current input mode. For example, an independent mode property may include “scaled area-of-interest”, the area within the panel active area to which all input areas-of-interest are mapped.</td>
</tr>
<tr>
<td>C Modes</td>
<td>User defined, prioritized input modes.</td>
</tr>
<tr>
<td>D Mode Editor</td>
<td>Definition of each mode’s conversion parameter, including electrical form (DVI, RGB, NTSC, etc.) input area-of-interest, etc.</td>
</tr>
<tr>
<td>E Area of Interest</td>
<td>Graphical tool to support definition of the input area-of-interest within the active area of the currently selected mode.</td>
</tr>
<tr>
<td>F Scaled Area of Interest</td>
<td>Graphical tool to support definition of the scaled area-of-interest within the active area of the display (attached panel).</td>
</tr>
<tr>
<td>G Device I/O</td>
<td>Debug tool, shows the RS-232 communication between the VP10 configuration tool and the VP10.</td>
</tr>
</tbody>
</table>
VP10 LCD Controller

Typically, the VP10 operates as follows:

1. Upon power up, the VP10 configures itself based on its internal BIOS.
2. When a valid video input mode is detected, the VP10 applies power to the display per the power sequence defined in the setup BIOS.
3. If a higher priority input mode is detected and “electrical form break” is enabled, the VP10 will re-configure to capture the new video input.
4. If video is lost, the VP10 can power down the display, drive a pre-defined color (blue-screen), or some other function as defined in the BIOS created with the configuration utility.

Additional Resources
To view our full line of LCD Controllers or other products, visit our website at:

www.westardisplaytechnologies.com

Contact Us
Call us for additional product info and pricing.

+1 (636) 300-5164